博客
关于我
并查集(初学)
阅读量:334 次
发布时间:2019-03-04

本文共 846 字,大约阅读时间需要 2 分钟。

并查集是一种高效的数据结构管理算法,主要用于合并和查找操作。它通过路径压缩和按秩合并两个优化手段,确保了几乎常数时间复杂度的性能。

并查集的基本原理

并查集由两个主要函数组成:查找(Find)和合并(Union)。查找函数用于确定节点所属的集合,合并函数用于将两个集合合并成一个。

查找函数(Find)

查找函数的主要作用是找到一个节点的根节点,通过路径压缩优化,将节点直接连接到根节点,减少后续查询的时间。

int find(int root) {    int son = root;    while (root != pre[root]) { // 查找上级        root = pre[root];    }    return root; // 返回上级}

合并函数(Union)

合并函数用于将两个节点所在的集合合并。首先查找两个节点的根节点,如果根节点不同,则将其中一个根节点的父节点指向另一个根节点。

int union(int start, int finish) {    int root1 = find(start);    int root2 = find(finish);    if (root1 != root2) { // 如果父类节点不相同(既构成不了环路)        pre[root1] = root2;    }}

路径压缩优化

为了提升查找效率,查找函数会在路径压缩过程中将节点直接连接到根节点,减少后续查找的时间。

while (son != root) { // 路径压缩    int cmp = pre[son];    pre[son] = root; // 把上级节点赋值为根节点    son = cmp;}

按秩合并优化

在合并两个集合时,按秩合并优化会将较小的树合并到较大的树上,保持树的高度平衡,确保操作的时间复杂度。

通过以上方法,并查集能够高效地管理图中的连通区域,广泛应用于图论、网络管理和分布式系统等领域。

转载地址:http://xxqq.baihongyu.com/

你可能感兴趣的文章
NLP_什么是统计语言模型_条件概率的链式法则_n元统计语言模型_马尔科夫链_数据稀疏(出现了词库中没有的词)_统计语言模型的平滑策略---人工智能工作笔记0035
查看>>
NLP三大特征抽取器:CNN、RNN与Transformer全面解析
查看>>
NLP学习笔记:使用 Python 进行NLTK
查看>>
NLP度量指标BELU真的完美么?
查看>>
NLP的不同研究领域和最新发展的概述
查看>>
NLP的神经网络训练的新模式
查看>>
NLP采用Bert进行简单文本情感分类
查看>>
NLP问答系统:使用 Deepset SQUAD 和 SQuAD v2 度量评估
查看>>
NLP项目:维基百科文章爬虫和分类【02】 - 语料库转换管道
查看>>
NLP:使用 SciKit Learn 的文本矢量化方法
查看>>
nmap 使用方法详细介绍
查看>>
Nmap扫描教程之Nmap基础知识
查看>>
nmap指纹识别要点以及又快又准之方法
查看>>
Nmap渗透测试指南之指纹识别与探测、伺机而动
查看>>
Nmap端口扫描工具Windows安装和命令大全(非常详细)零基础入门到精通,收藏这篇就够了
查看>>
NMAP网络扫描工具的安装与使用
查看>>
NMF(非负矩阵分解)
查看>>
nmon_x86_64_centos7工具如何使用
查看>>
NN&DL4.1 Deep L-layer neural network简介
查看>>
NN&DL4.3 Getting your matrix dimensions right
查看>>